Abstract |
The purpose of this study was to analyze the soil on two waste areas that lack plants to find out the limiting factors of plant introduction, and to find out the possibility of plant introduction through plant growth experiments by mixing the two waste soil. In the case of tungsten waste soil, insufficient organic matter, water content, effective phosphoric acid, and nitrogen content were the limiting factors for plant introduction, and in the case of coal waste soil, low pH of the soil acted as the limiting factors for natural introduction. Growth experiments showed that the number of leaves of Ipomoea nil grown in soil mixed with both waste soil was 2.7 times greater than that of Ipomoea nil grown in tungsten waste soil, and 2.29 times greater than that of Ipomoea nil grown in coal waste soil. The fresh weight comparison showed that Ipomoea nil grown in soil mixed with the two waste soil had a fresh weight of 2.64 times higher than that of tungsten waste soil and 2.45 times higher than that of coal waste soil. There was no significant difference in the fresh weight of Ipomoea nil grown in soil mixed with the two waste soil and in general soil. Therefore, when the two waste soil are mixed, it can be judged that the components unfavorable to growth complement each other, improving the soil and being effective in plant growth. |
|
|
Key Words |
Mine, Heavy metal, plants, Mine waste |
|
|
|
|